Glycerol inhibits water permeation through Plasmodium falciparum aquaglyceroporin.
نویسنده
چکیده
Plasmodium falciparum aquaglyceroporin (PfAQP) is a multifunctional membrane protein in the plasma membrane of P. falciparum, the parasite that causes the most severe form of malaria. The current literature has established the science of PfAQP's structure, functions, and hydrogen-bonding interactions but left unanswered the following fundamental question: does glycerol modulate water permeation through aquaglyceroporin that conducts both glycerol and water? This paper provides an affirmative answer to this question of essential importance to the protein's functions. On the basis of the chemical-potential profile of glycerol from the extracellular bulk region, throughout PfAQP's conducting channel, to the cytoplasmic bulk region, this study shows the existence of a bound state of glycerol inside aquaglyceroporin's permeation pore, from which the dissociation constant is approximately 14μM. A glycerol molecule occupying the bound state occludes the conducting pore through which permeating molecules line up in single file by hydrogen-bonding with one another and with the luminal residues of aquaglyceroporin. In this way, glycerol inhibits permeation of water and other permeants through aquaglyceroporin. The biological implications of this theory are discussed and shown to agree with the existent in vitro data. It turns out that the structure of aquaglyceroporin is perfect for the van der Waals interactions between the protein and glycerol to cause the existence of the bound state deep inside the conducting pore and, thus to play an unexpected but significant role in aquaglyceroporin's functions.
منابع مشابه
Dynamics and energetics of solute permeation through the Plasmodium falciparum aquaglyceroporin.
The aquaglyceroporin from Plasmodium falciparum (PfAQP) is a potential drug target for the treatment of malaria. It efficiently conducts water and other small solutes, and is proposed to intervene in several crucial physiological processes during the parasitic life cycle. Despite the wealth of experimental data available, a dynamical and energetic description at the single-molecule level of the...
متن کاملMolecular dissection of water and glycerol permeability of the aquaglyceroporin from Plasmodium falciparum by mutational analysis.
The selectivity of aquaporins for water and solutes is determined by pore diameter. Paradoxically, the wider pores of glycerol facilitators restrict water passage by an unknown mechanism. Earlier we characterized an aquaglyceroporin from Plasmodium falciparum with high permeability for both glycerol and water. We use point mutations to demonstrate that amino acids directly lining the pore are n...
متن کاملA single, bi-functional aquaglyceroporin in blood-stage Plasmodium falciparum malaria parasites.
The malaria parasite Plasmodium falciparum faces drastic osmotic changes during kidney passages and is engaged in the massive biosynthesis of glycerolipids during its development in the blood-stage. We identified a single aquaglyceroporin (PfAQP) in the nearly finished genome of P. falciparum with highest similarity to the Escherichia coli glycerol facilitator (50.4%), but both canonical Asn-Pr...
متن کاملIdentification of transmembrane region and orientation of aquaglyceroporin of Plasmodium falciparum.
Aquaglyceroporin is a subclass of aquaporin water channels. This protein is also a focused potential drug target for falciparum malaria. However, the knowledge about the structure of this protein is limited. In this communication, the author performed a study to determine the transmembrane region and orientation of aquaglyceroporin of Plasmodium falciparum . According to this study, six transme...
متن کاملErythritol predicted to inhibit permeation of water and solutes through the conducting pore of P. falciparum aquaporin.
Plasmodium falciparum aquaporin (PfAQP) is a multifunctional channel protein in the plasma membrane of the malarial parasite that causes the most severe form of malaria infecting more than a million people a year. This channel protein facilitates transport of water and several solutes across the cell membrane. In order to better elucidate the fundamental interactions between PfAQP and its perme...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of structural biology
دوره 181 1 شماره
صفحات -
تاریخ انتشار 2013